

UNDERSTANDING INTERNET PERFORMANCE FROM THE USER PERSPECTIVE

Kacker, Liu, Yen, Zhang, Wilkinson, Marbukh, Kelley, Mills, Montgomery

DARPA Network Modeling and Simulation Workshop 09/27-29/00, Albuquerque, NM

PROJECT GOALS & NMS CHALLENGES

- Develop a web-based repository of "useful real data" with interactive graphical and statistical analyses that can be extended by the DARPA NMS Research Community.
 - Addresses NMS challenge to validate models by providing real data and useful analysis routines to characterize real data.
 - Addresses NMS challenge to produce innovative models of traffic sources by focusing on analyses to produce statistic functions that represent measured traffic.
- Investigate techniques to identify and respond to anomalies in network conditions, even in the face of uncertainty regarding the available information
 - Addresses NMS challenge to provide innovative models of network control by applying game theoretic approaches to controlling network resource allocation under uncertainty.
 - Addresses NMS challenge to provide innovative models of network traffic through exploratory data analysis to produce patterns that can be used for detection of network anomalies.
- Improve existing techniques for modeling and understanding Internet behavior and performance
 - Addresses NMS challenge to provide innovative models of networks by adding features to existing DARPA-funded simulation models and by applying cellular automata models to investigate network dynamics arising from collective behavior at multiple time scales.

PROGESS & FUTURE PLANS IN THREE AREAS

- 1. EXPLORATORY DATA ANALYSIS USING DATA COLLECTED DURING TWO YEARS OF XIWT ACTIVE MEASUREMENTS
- 2. FRAMEWORK FOR MODELING NETWORK RESOURCE ALLOCATION UNDER UNCERTAIN INFORMATION
- 3. SIMULATION MODELS FOR DIFFERENTIATED SERVICES QUEUE MANAGEMENT ALGORITHMS

EXPLORATORY DATA ANALYSIS

- Accomplishments
- Proof-of-Concept Interactive Data Analysis Scripts
 - Box Plots for Round-Trip Times
 - Auto-Correlation Functions for Round-Trip Times
- Future Plans

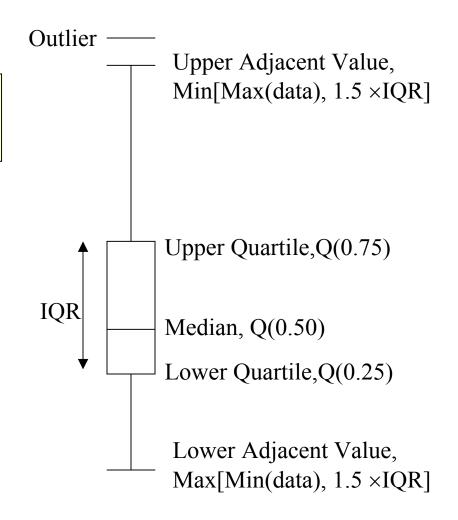
ACCOMPLISHMENTS

Proof-of-Concept

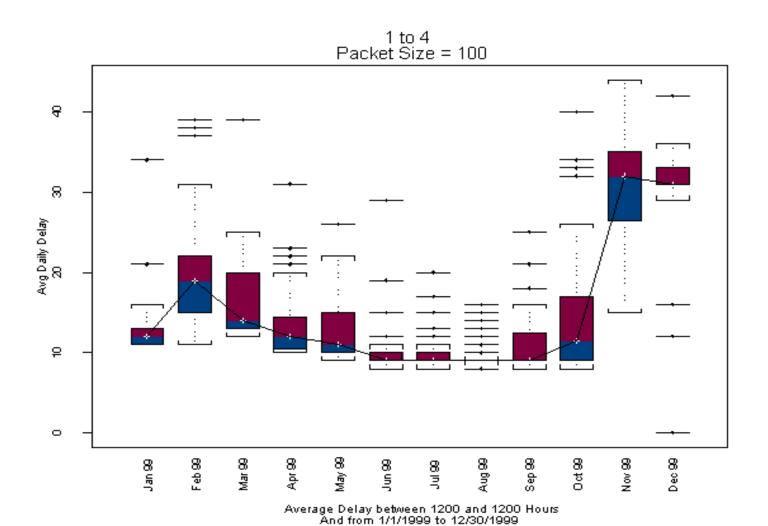
- Data: 05/01/1998 04/30/2000
- Analysis Scripts: subset, Box plot, and Auto correlation function
- Prototype: http://statserver.statsci.com/statserver/demos
- Underway: Converting Proof-of-Concept into Operational Web-based StatServer Located at NIST

Exploratory Data Analysis

 Using Round-Trip Times from NIST to 3 destinations and covering the period from 05/01/98 - 04/09/99


Findings

- For a given time interval, stationary models apply, but different models for different time intervals
- Can be modeled as long memory process with cyclic behavior
- Heavy-tailed distributions

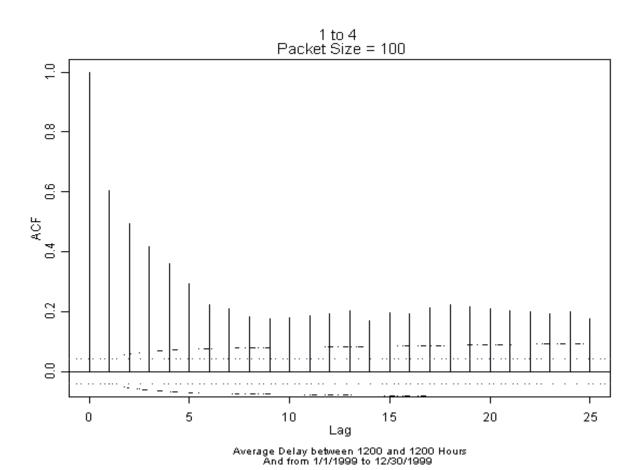

BOX PLOT

A five-point summary of one dimensional data

A BOX PLOT FROM XIWT RTT DATA

AUTO-CORRELATION FUNCTION (ACF)

- Data Set: X_1, X_2, \dots
- ACF (Lag k): correlation between the data


$$-X_1, X_2, ..., X_k, X_{k+1}, X_{k+2}, ..., X_N, ..., X_{k+N}$$

$$-X_1, X_2, ..., X_k, X_{k+1}, X_{k+2}, ..., X_N, ..., X_{k+N}$$

- Represents structure in time series $X_1, X_2, ..., X_N, ..., X_{k+N}$
 - "near zero" for white noise process
 - "tapers off" for auto-regressive process
 - "cuts off" for moving average process
 - "remains high" for random walk

ACF PLOT FROM XIWT RTT DATA

FUTURE PLANS

- Bring web-based XIWT data and analysis service "on the air"
 - Target date: mid-January 2001
 - Still must deal with: missing data, data integrity, and maintenance
 - Automate copy of CNRI data to NIST once a day
 - Subsets of data
 - Provide baseline capabilities: XIWT Internet Service Performance,
 Data Analysis and Visualization, and other analytics
 - Seek feedback on what analytics are of interest and on other improvements
- Once web-based data repository with integrated statistical software is operation, we will consider expanding to other "useful data sets" and supporting analysis scripts from others

Network Modeling and Control (NM&C) under Uncertainty

- Problem Statement
- General Framework for a Solution
- Simple but Non-Trivial Example
- Future Plans

Problem Statement

- Sources of Uncertainty
 - Statistical nature of measurements, i.e., confidence intervals rather than point estimates for the parameters
 - Possible non-stationary environment, i.e., anomalies
 - Possible adversarial environment, i.e., denial of service attack
- Currently NM&C deals only with extreme cases
 - Probabilistic approach: assumes simple typically stationary probabilistic models, with known parameters, for the environment.
 Average, steady-state behavior. Very sensitive to the assumptions.
 - Competitive approach: makes no assumptions on the environment. Guards against the worst case scenario. Results in very expensive solutions in terms of the resource utilization.
- **Challenge**: develop middle-ground approach to NM&C able to incorporate partial information on the environment

General Framework for NM&C under Uncertainty

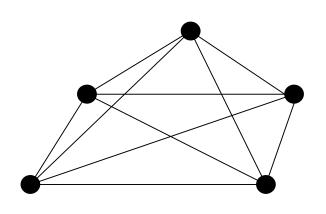
Step 1. Probabilistic approach

$$L^{opt}(\theta) = \min_{u \in U} L(u, \theta) \Rightarrow u^{opt}(\theta)$$

where: L -losses, u -control action, θ -environment

Step 2. Minimax approach

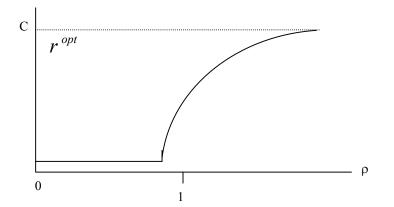
$$F_*^* = \min_{u \in U} \max_{\theta \in \Theta} \{L(u, \theta) - L^{\min}(\theta)\} \Rightarrow u^{opt}(\Theta)$$


Step 3.
$$Minimax\&Bayes$$
 'approach $u \in \{u : \Phi(u) - F_*^* \le \Delta, u \in U\}$

where
$$\Phi(u,\theta) = \max_{\theta \in \Theta} F(u,\theta)$$

and risk tolerance of the network is characterized by $\Delta > 0$

Example: Admission control in a symmetric fully connected circuit switched network


link capacity: C

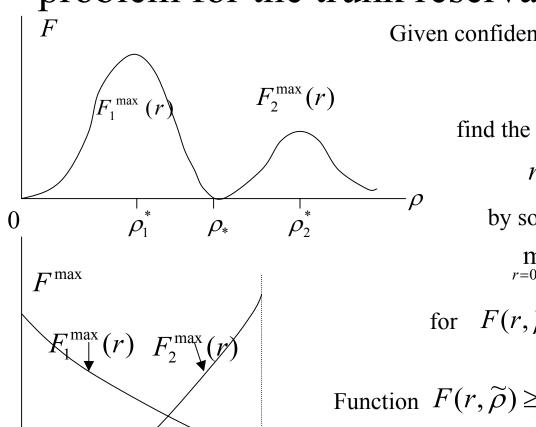
link load: $\lambda = C\rho$

trunk reservation parameter: r

loss probability: $L(r, \rho)$

$$u \Rightarrow r, \theta \Rightarrow \rho$$

Given ρ , optimal trunk reservation:


$$L^{\min}(\rho) = \min_{r=0,1,\dots,C} L(r,\rho) \Rightarrow r^{opt}(\rho)$$

Links occupancies are independent if

$$N \to \infty$$

Example continued: solution of the *minimax* problem for the trunk reservation parameter

 $r^{opt}([0,\infty])$

Given confidence interval for the external load

$$[\rho - \delta, \rho + \delta]$$

find the trunk reservation parameter

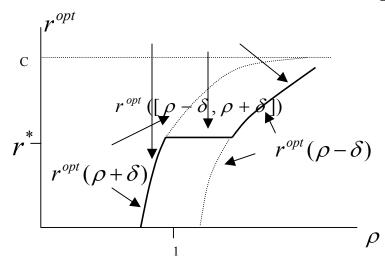
$$r^{opt}([\rho-\delta,\rho+\delta])$$

by solving optimization problem

$$\min_{r=0,1,\dots,C} \max_{\rho_{-\delta} \leq \widetilde{\rho} \leq \rho + \delta} F(r, \widetilde{\rho})$$

for
$$F(r, \widetilde{\rho}) = L(r, \widetilde{\rho}) - \min_{r=0,1,\dots,C} L(r, \widetilde{\rho})$$

Function $F(r, \tilde{\rho}) \ge 0$ has three local minima over


$$\widetilde{\rho}$$
: $F(r,\widetilde{\rho}) = 0$ at $\widetilde{\rho} = 0, \widetilde{\rho} = \infty$

and
$$\widetilde{\rho} = \rho_* : r^{opt}(\rho_*) = r$$

Information Technology Laboratory

Results for the Example and Future Research

* If no information on ρ is available, the optimal trunk reservation parameter is

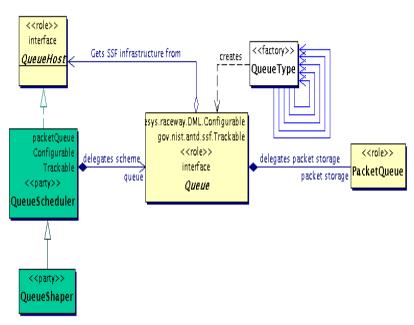
$$r^{opt}([0,\infty]) = r^*$$

Example:
$$C = 10 \Rightarrow r^* = 2$$

* Solution is based on boundaries (not average) of confidence interval

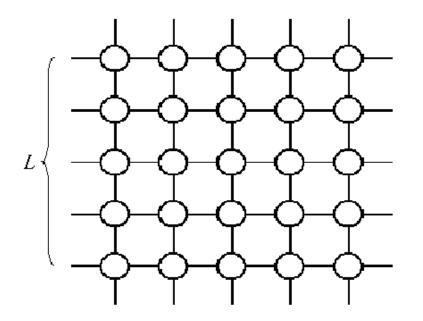
$$[\rho - \delta, \rho + \delta]$$

Future research:


- * incorporate incomplete information into network model
- * develop modeling technique for non-stationary environment
- * implement this approach for more realistic network models (Internet)
- * assess sensitivity of the network performance with respect to measurement errors

OTHER PROGRESS

DEVELOPED MODELS FOR DIFFERENTIATED SERVICES QUEUE MANAGEMENT ALGORITHMS



CONTRIBUTED MODELS TO FUTURE RELEASE OF SSFnet

- RedQueue implements the RED scheme
- RioQueue implements the RIO scheme
 - MeterQueue tags packets according to the marking scheme
- TSW2CMarker implements the TSW algorithm to mark packets "In" or "Out"
- PremiumQueue implements the core router part of the Premium Service

OTHER PLANS

- Investigate the application of 2-D
 Cellular Automata to Model Dynamics
 of Large-Scale Networks on Multiple
 Time Scales
- Explore for phenomena caused by collective behavior of autonomous interacting network nodes
- Visualize Time-Varying Dynamic Behavior of Large-Scale Networks